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Abstract

As one of the fundamental vision tasks, face alignment has attracted a tremendous
amount of efforts and achieved significant improvement over the decades. While the
state-of-the-art works fairly well on the lab datasets and certain face images in the wild,
it may easily fail in front of large pose variation, e.g., profile. In the worst case, the in-
visible landmarks may crash the initial models and thus limit many powerful models that
only work well within a certain range using reliable features. To that end, we propose
a new deep evolutionary model to integrate 3D Diffusion Heap Maps (DHM) to com-
pensate for the invisible landmarks issue in large pose variation. Our contributions are
summarized as: first, we introduce a sparse 3D DHM to assist the initial modeling under
extreme pose conditions; second, a simple yet effective CNN feature is extracted and fed
to recurrent neural networks for evolutionary learning. Additionally, we propose a Recur-
rent HourGlass (RHG) network that boost our evolutionary learning through HourGlass
and LSTM module. Extensive experiments on three popular face alignment databases
demonstrate the advantage of the proposed models over the state-of-the-art, especially
under large-pose conditions. We also discuss and analyze the limitations of our models
and future research work.

1 Introduction

Face recognition and related application becomes increasingly popular, especially with the
advances of deep learning. To name a few, face identification/verification [27], gaze detec-
tion [12], virtual face make-up [11], age synthesis [9], etc. Nonetheless, almost all of them
heavily rely on face alignment that automatically locates predefined key points on a face. It
has been treated as one of fundamental problems in real-world face recognition systems.
Recent research indicates that for moderate poses, illuminations, and expressions of face
images in the wild, precisely detecting facial key points is feasible. Notably faces in photos
are not always in medium poses where the yaw angle is less than 45° and all the landmarks
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(b)
Figure 1: Landmarks of (a) traditional method SDM and (b) our 3D DHM on different poses.
The red dots indicate invisible landmarks.

(b)

Figure 2: Comparison between (a) original faces and (b) misguidance faces generated by
BFM.

are visible [29]. Faces in the wild rendering large poses will, however, fail even the most
advanced face alignment algorithms. We analyze and detail the reasons as the followings:

Feature: Face alignment methods heavily rely on the features extracted from the image.
2D face images in large poses would hide some landmarks due to self-occlusion. When
faces deviate from the frontal view, we can only trust those visible landmarks and use them
to estimate the location of the invisible ones. Therefore, the alignment accuracy degrades
significantly given more invisible landmarks.

Model: Face alignment can be treated as a non-linear optimization problem regarding to
deformability of face. One solution is to map landmarks from 2D location space to feature
space. This makes senses in medium poses but would fail in case of large poses where half of
the key points are lost. Figure | shows the comparison between a representative traditional
method [23] and ours in large-pose alignment tasks. To make up the information loss caused
by self occlusion in large pose cases, 3D models are considered before regression. Consid-
ering the popular 3D approach Basel Face Model (BFM) [2] trained on only 200 people, the
generated 3D dense model may misguide the regression process. From Figure 2, we can see
the warped images by BFM fit the poses with minor difference over different races. Thus,
we prefer a small and sparse 3D model for efficacy.

Data: While we can get access to many faces with landmarks from different face datasets
nowadays, most of them are labeled by the human. Among them, most of the medium-pose
data is labeled fairly well for training alignment models. Unfortunately, when the ground
truth landmarks are self-occluded and become completely invisible, people have to guess
the true location. As a result, those invisible manually labeled landmarks turn to be very
unreliable, and confuse or even fail the model.

Contributions: We mainly focus on the first two challenges: feature and model in this
work, thanks to the recently released large facial landmark datasets [4, 29]. To summarize,
the contributions of this paper are:

e We propose a simple yet robust alignment feature learning paradigm using 3D Dif-
fusion Heap Maps (DHM) and CNN to create high-level reliable features containing
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Figure 3: Framework overview. Note we also show 3 diffusion heat map&inder the
input face image) calculated by Basel Face Model, and the nal heat maps including
invisible landmarks which, however, are skipped by many 2D face alignment models.

both 2D and 3D information. We further investigate HourGlass [25] and LSTM [1C
to upgrade our evolutionary learning paradigm, and achieve better performance. N
that our DHM is calculated from 3D model and only have 3 channels while 3DFA
[4] has 68 channels. This reduces the computation cost signi cantly.

We cast face alignment to a deep evolutionary model with both 2D texture and .
structure. Speci cally, we use RNN to model the dynamics of the least square syste
The system overview can be found in Figure 3.

We conduct extensive experiments and improve the performance on a few benchmg
We outperform the state-of-the-art by a large margin and show the robustness on |
the original dataset and re-annotated AFLW2000-3D dataset.

2 Related work

2D Face Alignment: The rst milestone work of 2D face alignment is ASM [6], followed
by many successful non-deep algorithms including AAM [7] and Constrained Local Meth
(CLM) [1] that considered the local patches around the facial landmarks as the features
used constrained shape for initializing. Recently, critical works include tree-based moc
[15, 18] which improved the speed of face alignment to more than 1000 frames per sec
Xiong et al. demonstrated the Supervised Descent Method [23] with the cascade of w
regressors for face alignment, and achieved the state-of-the-art performance [26]. Zh
al. extended the work [26] and presented a new strategy [28] for large poses alignmen
searching the best initial shape. Along with the spread of deep learning in Al is its succes
applications on face alignment, speci cally, Convolutional Neural Network (CNN). Sun
al. [20] rstly employed CNN model for face alignment tasks with a raw face as the input al
conduct regression with high-level features. Differently, Trigeorgis et al. presented a Rl
based approach with the philosophy of Xiong's work [23]. Another extension of SDM calle
Global Supervised Descent Methods (GSDM) [24] tried to solve the large poses problen
dividing the training space into different descent spaces. All these face alignment meth
only use 2D information and most of them use cascade method [15, 23, 26] and local p
features [1, 7, 22, 23]. Differently, we suggest an integration of global 2D and 3D de
evolutionary network to overcome the information loss caused by 2D patch features.
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